## Restoration case study: *Psidium cattleianum* dominated forest in the Waianae Mountains, Oʻahu



Jane Beachy, O'ahu Army Natural Resources Progarm, beachy@hawaii.edu

#### **2010 June:** Prior to clearing.

### 2015 July: 5 years later





0

#### Kahanahaiki Maile Flats Restoration Site

vater/

Ľ,

Photopoint
 Cleared 2010
 Cleared 2012
 Weed Control Areas
 Kahanahaiki
 Fence
 65 130

260

Meters





Uowolo, Amanda L. and Denslow, Julie S. 2008. Characteristics of the *Psidium cattleianum* (Myrtacea) Seed Bank in Hawaiian Lowland Wet Forests. *Pacific Science* vol. 62 no. 1:129-135



### **2010 June** Prior to clearing.

## **2010 Sept.** 2 months post-clearing

A CONTRACT OF A

## **2011 July** 12 months post-clearing

## **2012 July** 24 months post-clearing

## **2013 April** 33 months post-clearing

# **2014 Dec.** 53 months post-clearing

# **2015 July** 60 months post-clearing

### Total canopy cover over time.



- Prior to chipping, the area wasdensely canopied anddominated by non-native taxa.
- Immediately following clearing, the canopy was largely open.
- After 2 years, canopy cover remained low and was predominantly native.
- After 3-5 years, the canopy continued to refill primarily with native taxa.

### Understory cover over time.

| Time elapsed<br>after chipping | Non-native<br>understory | Native<br>understory |
|--------------------------------|--------------------------|----------------------|
| Control                        | 75-100%                  | 0-25%                |
| < 1 month                      | 0-25%                    | 0-25%                |
| 2 years                        | 0-25%                    | 25-50%               |
| 3 years                        | 25-50%                   | 25-50%               |
| 5 years                        | 0-25%                    | 25-50%               |

- Understory cover followed a similar pattern as canopy cover.
- Non-native vegetation dominated prior to chipping, but decreased immediately after chipping (p < 0.001), and stayed low for 5 years.
- Native vegetation cover increased (p < 0.001) by 2 years after chipping.

### Total species observed among all plots in chipped areas over time.



- Initially, diversity declined for all categories.
- From 2-5 years, all categories became more diverse except for the nonnative canopy, which rebounded only to its original level.

## Notable native and non-native taxon frequencies in the understory among plots over time.

| Native Taxa             | Frequency<br>Change | P value | Non-native Taxa                | Frequency<br>Change | P value |
|-------------------------|---------------------|---------|--------------------------------|---------------------|---------|
| Acacia koa              | 0 to 75%            | < 0.001 | Clidemia hirta                 | 5 to 40%            | 0.009   |
| Bidens torta            | 0 to 60%            | < 0.001 | Conya bonariensis              | 0 to 35%            | 0.004   |
| Cocculus<br>orbiculatus | 0 to 30%            | 0.009   | Crassocephalum<br>crepidioides | 0 to 45%            | < 0.001 |
| Coprosma<br>foliosa     | 5 to 45%            | 0.004   | Mesosphaerum<br>pectinatum     | 0 to 40%            | 0.001   |
| Dianella                | 0 to 45%            | < 0.001 | Rubus rosifolius               | 0 to 65%            | < 0.001 |
| sandwicensis            |                     |         | Psidium                        | 90 to 25%           | < 0.001 |
| Alyxia stellata         | 86 to 80%           | -       | cattleianum                    |                     |         |

- Removing *P. cattleianum* created large light gaps which allowed both invasive and native plants to colonize, grow and spread in the project area.
- The dramatic increase in *A. koa* is key to recovery

- *A. stellata* frequency first decreased to 0, before recovering to original levels.
- Not all of the weeds are expected to persist, as canopy cover increases and light levels continue to change.

| <b>Project Phase</b>                          | Duration | Weed Control Effort<br>(person hours)                           | Area Cleared<br>(ha) |
|-----------------------------------------------|----------|-----------------------------------------------------------------|----------------------|
| 2010 Clearing                                 | 2 months | 456                                                             | 0.36                 |
| 2012 Clearing                                 | 5 months | 519                                                             | 0.54                 |
| All Clearing (sum)                            | 7 months | 975                                                             | 0.90                 |
| Re-treatment and<br>follow up weed<br>control | 5 years  | 1,027<br>volunteer hours = 635 (62%)<br>staff hours = 392 (38%) | -                    |



- Restoration of *P. cattleianum* stands through aggressive weed control (clearcutting and chipping) can be highly effective.
- Native Hawaiian mesic forest can be very resilient. Within 5 years, both understory and canopy coverage reached approximately 50% vegetative cover.
- Seed broadcast of the short-lived perennial shrub Bidens torta was successful in creating large beds of this taxon within 2 years.
   Establishing a native ground cover likely reduced weed invasion.
- Outplanting is not necessary for restoration, although it may speed the process further.
- Follow-up weed control is critical to project success, and must be sustained for at least 5 years after initial clearing.
- The size of the project area should be based on the estimated area staff can commit to conducting follow-up weed control in, rather than the size of the area which can be clearcut in a given season.

- *Restoration of P. cattleianum stands through aggressive weed control (clearcutting and chipping) can be highly effective.*
- Native Hawaiian mesic forest can be very resilient. Within 5 years, both understory and canopy coverage reached approximately 50% vegetative cover.
- Seed broadcast of the short-lived perennial shrub Bidens torta was successful in creating large beds of this taxon within 2 years.
   Establishing a native ground cover likely reduced weed invasion.
- Outplanting is not necessary for restoration, although it may speed the process further.
- Follow-up weed control is critical to project success, and must be sustained for at least 5 years after initial clearing.
- The size of the project area should be based on the estimated area staff can commit to conducting follow-up weed control in, rather than the size of the area which can be clearcut in a given season.

- *Restoration of P. cattleianum stands through aggressive weed control (clearcutting and chipping) can be highly effective.*
- Native Hawaiian mesic forest can be very resilient. Within 5 years, both understory and canopy coverage reached approximately 50% vegetative cover.
- Seed broadcast of the short-lived perennial shrub *Bidens torta* was successful in creating large beds of this taxon within 2 years.
  Establishing a native ground cover likely reduced weed invasion.
- Outplanting is not necessary for restoration, although it may speed the process further.
- Follow-up weed control is critical to project success, and must be sustained for at least 5 years after initial clearing.
- The size of the project area should be based on the estimated area staff can commit to conducting follow-up weed control in, rather than the size of the area which can be clearcut in a given season.

- *Restoration of P. cattleianum stands through aggressive weed control (clearcutting and chipping) can be highly effective.*
- Native Hawaiian mesic forest can be very resilient. Within 5 years, both understory and canopy coverage reached approximately 50% vegetative cover.
- Seed broadcast of the short-lived perennial shrub Bidens torta was successful in creating large beds of this taxon within 2 years.
   Establishing a native ground cover likely reduced weed invasion.
- Outplanting is not necessary at all restoration sites, although it may speed the process further.
- Follow-up weed control is critical to project success, and must be sustained for at least 5 years after initial clearing.
- The size of the project area should be based on the estimated area staff can commit to conducting follow-up weed control in, rather than the size of the area which can be clearcut in a given season.

- *Restoration of P. cattleianum stands through aggressive weed control (clearcutting and chipping) can be highly effective.*
- Native Hawaiian mesic forest can be very resilient. Within 5 years, both understory and canopy coverage reached approximately 50% vegetative cover.
- Seed broadcast of the short-lived perennial shrub Bidens torta was successful in creating large beds of this taxon within 2 years. Establishing a native ground cover likely reduced weed invasion.
- Outplanting is not necessary for restoration, although it may speed the process further.
- Follow-up weed control is critical to project success, and must be sustained for at least 5 years after initial clearing.
- The size of the project area should be based on the estimated area staff can commit to conducting follow-up weed control in, rather than the size of the area which can be clearcut in a given season.

- *Restoration of P. cattleianum stands through aggressive weed control (clearcutting and chipping) can be highly effective.*
- Native Hawaiian mesic forest can be very resilient. Within 5 years, both understory and canopy coverage reached approximately 50% vegetative cover.
- Seed broadcast of the short-lived perennial shrub Bidens torta was successful in creating large beds of this taxon within 2 years.
   Establishing a native ground cover likely reduced weed invasion.
- Outplanting is not necessary for restoration, although it may speed the process further.
- Follow-up weed control is critical to project success, and must be sustained for at least 5 years after initial clearing.
- The size of the project area should be based on the estimated area staff can commit to conducting follow-up weed control in, rather than the size of the area which can be clearcut in a given season.