Developing Pest Management Applications With Unmanned Aerial Systems

Roberto Rodriguez¹, Ken Giles², Daniel Jenkins¹, and James Leary³

¹Department of Molecular Biosciences and Bioengineering University of Hawai'i at Mānoa, Honolulu, HI
²Department of Biological and Agricultural Engineering University of California at Davis, Davis, CA
³Department of Natural Resources and Environmental Management University of Hawai'i at Mānoa, Honolulu, HI

Helicopter Operations

• Due to terrain helicopters are necessary for surveillance and management

Herbicide Ballistic Technology (HBT)

- Herbicide containing projectiles
- Aerially-deployed

Leary, 2013

Unmanned Aerial Systems

 Aircraft and associated systems operated with no pilot on board

eBee (SenseFly)

Spreading Wings S1000+ (DJI)

RMAX (Yamaha)

Agras MG-1S (DJI)

Concept

HBT-UAS Fly To Target Treat Fly Back

Aircraft

- Payload:
 - 6 kg
- HT (max):
 15 min

Yamaha RMAX

- Payload:
 - 28 kg
- HT (max):
 - 60 min

DJI Matrice 600 Pro

- Payload:
 - 5.5 kg
- HT (max):
 38 min

Payload

Payload

Methods: Treatment Statistics

- Circular Error Probable (CEP)
 - Radius of circle containing 50% of points of impact
- Root Mean Squared Deviation
 - Difference between aiming point and points of impact

Methods: Treatment Statistics

Histogram distances to center w/ kernel density estimate

Group (x,y)-coordinates

Results: Treatment

Distance (m)	CEP (cm)	RMSD (cm)
2	1.87	10.41
4	3.81	12.89
6	4.87	6.40
8	5.58	12.11
10	5.05	10.08
20 15 E 10	• 2m • 4m • 6m	

Photo courtesy Ryo Kubota

Methods: Flight Stability & Battery Draw

- Automated rectangular flight path with stop to simulate target treatment (UgCS)
- Root Mean Squared Deviation
 - Horizontal and 3D difference between unencumbered (control) and HBT equipped aircraft flight path based on flight records
 - Measured for four stages of flight: Climb, Level, Stationary, Descent
- Battery Capacity
 - Battery capacity as measured by onboard flight computer

Methods: Flight Stability & Battery Draw (S1000+)

Results: Flight Stability (S1000+)

Results: Flight Stability (S1000+)

Results: Battery Draw (S1000+)

RMAX

Methods: Flight Stability & Battery Draw (M600P)

Results: Flight Stability (M600P)

Results: Battery Draw (M600P)

Agricultural Aircraft Operations

- To operate a civil UAS for Agricultural Aircraft Operations
 - Must comply with 14CFR§137, 14CFR§107, and have an agricultural aircraft operator certificate
 - Requires a Section 333 Exemption for Agricultural Aircraft Operations to void 14CFR §107.36 and portions of 14CFR§137

Regulatory Framework

Documentation

- Aerial Pesticide Application Guide
- Aircraft User Manuals
- Petition for Exemption
- HBT-UAS Manual
- Supplement to Aerial Application Guide for Unmanned Aerial Systems - Multirotor

Conclusions

- Projectile dispersal is within limits to treat a juvenile miconia plant
- Effects of the gimbal-marker system on flight stability are minimal in autonomous flight
- Added weight substantially reduces available flight time on the S1000+ to one mission of 3 minutes
- RMAX is not compatible with envisioned application due to cost and lack of autonomous flight capabilities
- Matrice 600 Pro is capable of multiple missions on a single set of batteries
- Future Work
 - Secure 333 Exemption
 - Consider miniaturized system

Acknowledgements

- Partners: University of California at Davis, Leading Edge Technologies, Tippmann Sports
- This project was funded in parts by:
 - US Forest Service Special Technology Development
 Program Award R5-2017-01
 - USDA Hatch Act Formula Supplemental Grant
 Project 1132H
 - Hawaii Invasive Species Council Research and Technology Grant Program 2017 Award

Developing Pest Management Applications With Unmanned Aerial Systems

Roberto Rodriguez¹, Ken Giles², Daniel Jenkins¹, and James Leary³

¹Department of Molecular Biosciences and Bioengineering University of Hawai'i at Mānoa, Honolulu, HI
²Department of Biological and Agricultural Engineering University of California at Davis, Davis, CA
³Department of Natural Resources and Environmental Management University of Hawai'i at Mānoa, Honolulu, HI