Calibrating a helicopter long-line sprayer treating incipient gorse patches in Humuula, Big Island

Leary, J. Dept. of Natural Resources and Environmental Management

Ulex europaeus

Root nodules

East facing slope of Mauna Kea >2000 m_{asl}

Wailuku River headstream

Aerial Long-line sprayer targeting incipient patches expanding beyond the perimeter infestation

The long-line spray assembly: 25 gal tank with 100 ft x 3/8 in. hose tethered to the under carriage of the helicopter. Distal nozzle assembly with three SJ3-06 vp solid stream nozzles (TeeJet Inc., Wheaton, IL) spaced 12 in. apart in a triangle and rotated 120° from each other. Each nozzle had three orifices to create a (C) directed spray pattern with a total of nine treatment points evenly distributed across a 5 m diameter with the spray.

Flight surveillance tracks and (B) treated gorse patches for operations conducted in December 2011 (purple), January 2012 (green) and February 2012 (red).

populations with 24 gallon herbicide batches (see methods for formulations)						
	operation	targets	time (min)	distance (ft)		
Dec 2011	1	29	35	20,807		
	2	18	12	6,482		
	3	60	12	2,673		
	4	74	25	18,541		
	5	69	27	19,995		
	6	93	35	9,284		
	7	112	21	6,495		
	8	34	9	3,582		
	9	66	25	7,733		
	10	41	20	14,356		
Jan 2012	11	65	14	1,339		
	12	88	15	1,193		
	13	81	14	2,946		
	14	88	21	3,775		
	15	95	12	1,098		
Feb 2012	16	59	20	4,795		
	17	56	17	4,304		
	18	79	12	4,394		
	19	63	15	3,436		
	20	63	12	2,713		
	21	97	17	3,781		

 Table 1. Empirical parameters of sprayball operations treating satellite Gorse (Ulex europaeus)

Operational measures of efficiency

Search effort (min/acre) versus cover density for directed long-line treatment operations (n=21) conducted from December 2011 - October 2012.

Patch treatment rate (targets/acre) versus cover density for directed long-line treatment operations (n=21) conducted from December 2011 - October 2012.

Simple regression coefficients as performance analytics for surveillance efficiency, target acquisition rate and operational cost estimates all relative to cover density

	Coeffic				
Dependant variable	m	b	R ²	P _{0.05}	
Surveillance efficiency (SE; min/acre)	28.937	0.769	0.956	0.00	
Patch treatment rate (PTR; T/hr)	45.122*ln	410.64	0.691	0.00	
Cost estimation (\$USD)	604.2	14.14	0.968	0.00	
^a Refer to figures 2, 3 and 4 for SE, TAR and HP, respectively. ^b Refer to figure 5 for simulations.					

Operational measures of efficiency continued...

Mean herbicide target application rates (gallon/target) for all directed long-line treatment operations (n=21). (X- outliers removed from further calculations)

Operational costs (\$USD/acre) versus cover density estimated for each of the directed long-line treatment operations (n=21) conducted from December 2011 - October 2012.

Simple regression coefficients as performance analytics for surveillance efficiency, target acquisition rate and operational cost estimates all relative to cover density

	Coefficients				
Dependant variable	m	b	R ²	P _{0.05}	
Surveillance efficiency (SE; min/acre)	28.937	0.769	0.956	0.00	
Patch treatment rate (PTR; T/hr)	45.122*ln	410.64	0.691	0.00	
Cost estimation (\$USD)	604.2	14.14	0.968	0.00	
^a Refer to figures 2, 3 and 4 for SE, TAR and HP, respectively. ^b Refer to figure 5 for simulations.					

Table 3. Operational estimates relative to gorse cover density									
cover	targets/	acres/	min/	targets/	flight	ops/	herbicide	flight	total cost
density	acre	tank	acre	min	time/tank	fuel cycle	\$/acre	\$/acre	/acre
0.01	2	31.6	1.1	2	33.5	3.0	1.75	15.88	17.62
0.02	4	15.8	1.3	3	21.3	4.7	3.50	20.22	23.71
0.03	6	10.5	1.6	4	17.3	5.8	5.25	24.56	29.80
0.04	8	7.9	1.9	4	15.2	6.6	6.99	28.90	35.89
0.05	11	6.3	2.2	5	14.0	7.1	8.74	33.24	41.98
0.06	13	5.3	2.5	5	13.2	7.6	10.49	37.58	48.07
0.07	15	4.5	2.8	5	12.6	7.9	12.24	41.92	54.16
0.08	17	4.0	3.1	5	12.2	8.2	13.99	46.26	60.25
0.09	19	3.5	3.4	6	11.9	8.4	15.74	50.60	66.34
0.1	21	3.2	3.7	6	11.6	8.6	17.48	54.94	72.43
0.11	23	2.9	4.0	6	11.4	8.8	19.23	59.28	78.51
0.12	25	2.6	4.2	6	11.2	8.9	20.98	63.62	84.60
0.13	27	2.4	4.5	6	11.0	9.1	22.73	67.96	90.69
0.14	30	2.3	4.8	6	10.9	9.2	24.48	72.30	96.78
0.15	32	2.1	5.1	6	10.8	9.3	26.23	76.64	102.87
0.16	34	2.0	5.4	6	10.7	9.4	27.97	80.98	108.96
0.17	36	1.9	5.7	6	10.6	9.4	29.72	85.33	115.05
0.18	38	1.8	6.0	6	10.5	9.5	31.47	89.67	121.14
0.19	40	1.7	6.3	6	10.4	9.6	33.22	94.01	127.23
0.2	42	1.6	6.6	6	10.4	9.6	34.97	98.35	133.32
0.21	44	1.5	6.8	6	10.3	9.7	36.72	102.69	139.40
0.22	46	1.4	7.1	7	10.3	9.7	38.46	107.03	145.49
0.23	49	1.4	7.4	7	10.2	9.8	40.21	111.37	151.58
0.24	51	1.3	7.7	7	10.2	9.8	41.96	115.71	157.67
0.25	53	1.3	8.0	7	10.1	9.9	43.71	120.05	163.76

Collaborators: DHHL

Supported in part by : USDA Hatch, USDA RREA, NRCS CIG Agreement 69-9251-9-819