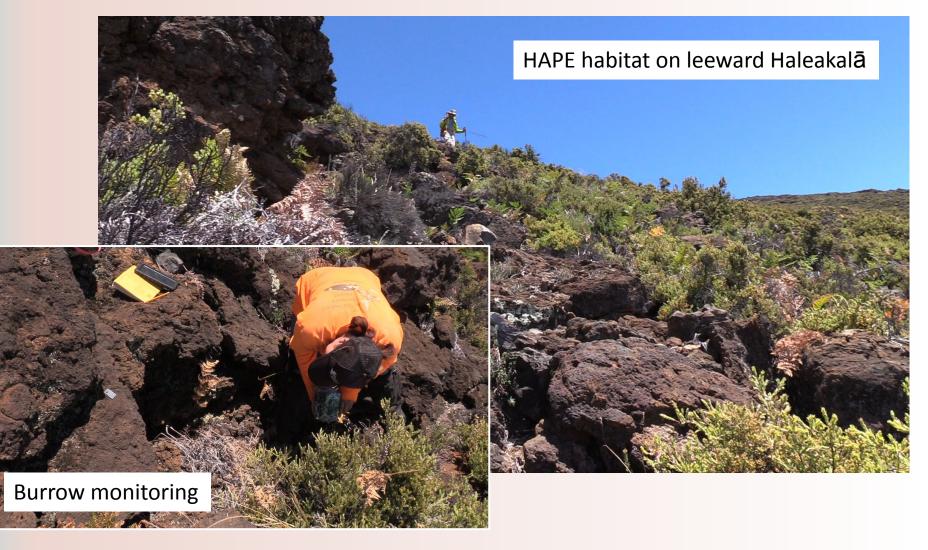
Habitat assessment following ungulate exclusion in upper Kahikinui Forest & Nakula Natural Area Reserves



Jenni Learned, Che Frausto, Martin Frye, Puakea Mo'okini-Oliveira, and Jay Penniman

Hawaiian petrel; Pterodroma sandwichensis (HAPE)

- On Maui, nest Mar. Oct. on high altitude slopes
- 3,000 4,000 breeding pairs in Haleakalā NP

Fence completed in July 2014 Total fenced area = 2337 acres

HAPE burrow locations

Fenced area

.5

٠

"Upper management area" above 6800'

Kahikinui = 604 acres

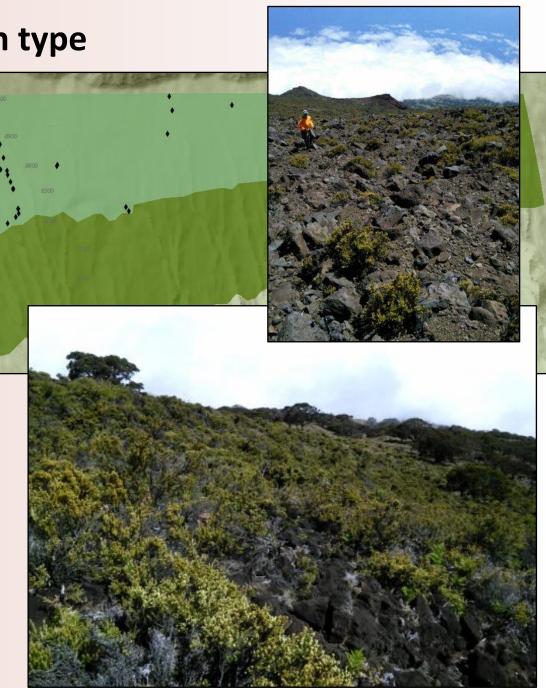
Kahikinui FR

Nakula = 702 acres

2

Nakula NAR

East Maui
Area
detail
- Anna


Habitat and vegetation type

Alpine rockland: Above 8000'

- High-altitude desert
 - Dubautia menziesii and Argyroxiphium sandwicense
 - pūkiawe/'ōhelo
 - Agrostis sandwicensis
- <30% cover, <40% humidity</p>
- Minimal soil development

Sub-alpine shrubland: 6000'-8000'

- Ericaceous shrub community
 - pūkiawe/'ōhelo
 - Deschampsia/Pteridium
- Spans inversion layer
- Moderate soil formation

Impacts of feral goats

- Low impact on pūkiawe/'ōhelo
- HIGH impact on Dubautia and Argyroxiphium
- HIGH impact on māmane
- Introduced grasses move in and outcompete

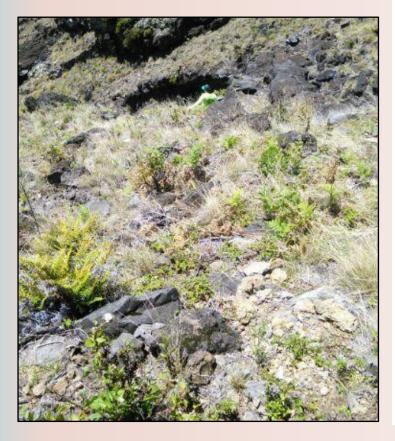
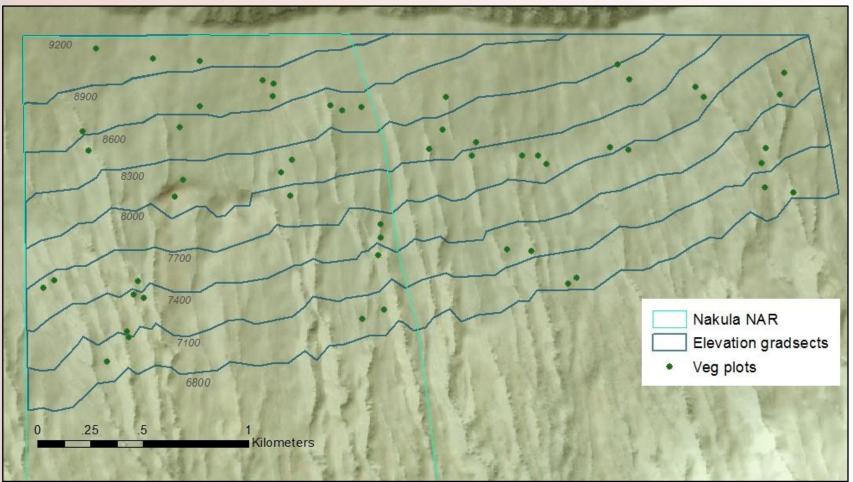



Figure 7. Potential native vegetation of Nakula NAR.

Our questions:


- How are the vegetation communities responding to ungulate removal?
 - Veg survey completed March 2017, to be repeated annually
- Does ungulate exclusion benefit the Hawaiian petrel colony on Haleakalā?
 - Burrow searching/monitoring annually

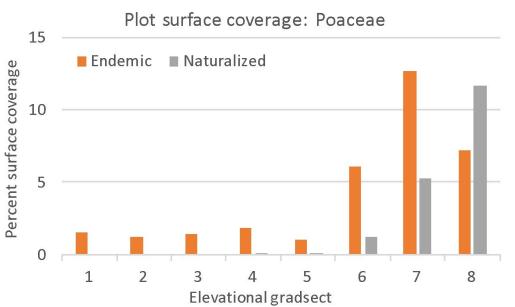
Permanent plot selection:

- Upper management area = 8 gradsects of 300' elev.
- 10m x 10m plots randomly generated to represent 0.1% total area
- Plot n = 55

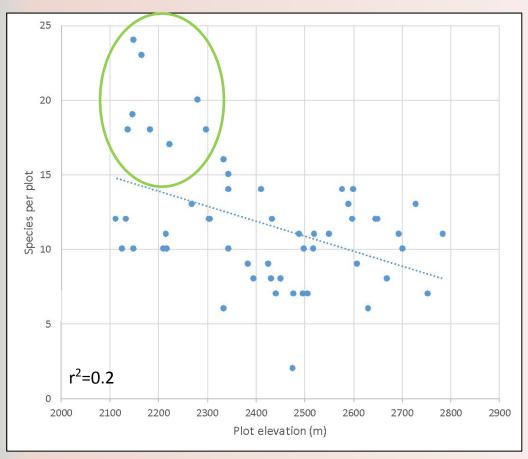
Survey methodology:

- Standard Relevé method; % cover class (1-6) for each species
- Other variables; slope, aspect, surficial geology, evidence of bioturbation

Survey results: Diversity

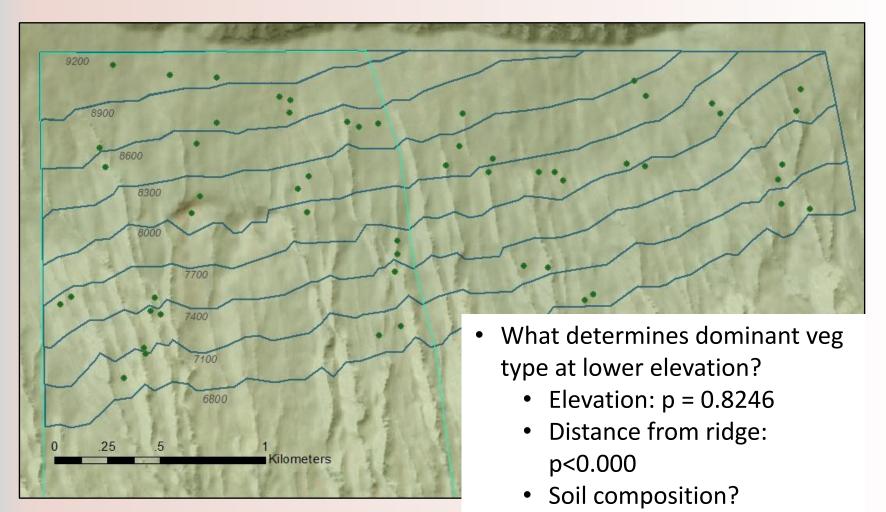

		Endemic		Indigenous		Naturalized	
		Species	Plot count	Species	Plot count	Species	Plot count
	TOTAL	15	246	9	140	23	241
	Family						
	Aspleniaceae	1	19				
	Asteraceae	4	27			8	145
	Campanulaceae					1	4
	Caryophyllaceae					1	18
	Cyperaceae	1	14				
	Dennstaedtiaceae			1	4		
	Ericaceae	1	39	1	53		
māmane	Fabaceae	1	1				
\rightarrow	Gentianaceae					1	9
	Geraniaceae					1	6
	Hypolepidaceae	1	49				
	Juncaceae	1	13				
	Lythraceae			1	9		
	Myrtaceae	1	1				
'Ōhi'a →	Oxalidaceae			1	9		
	Plantaginaceae					1	8
	Poaceae	2	70			6	30
	Polygonaceae					1	3
	Primulaceae					1	4
	Psilotaceae		2	1	2		
	Pteridaceae			2	55	2	14
	Rosaceae			1	7		
	Rubiaceae	2	13				
	Santalaceae			1	1		

- 24 native vs. 23 non-native species
- Family richness higher for native species (17 vs. 10 families)
- Native species are more even in distribution (*E* = 0.66 vs. 0.41)


Survey results: Abundance

Abundan				Plot	cover	e %
ceRank	Family	Species	Nativity	count	(m2)	cover
1	Ericaceae	Styphelia tameiameiae	indigenous	53	1359	25.6
2	Asteraceae	Hypochoeris radicata	naturalized	51	45.5	0.9
3	Pteridaceae	Pellaea ternifolia	indigenous	51	45.3	0.9
4	Hypolepidaceae	Pteridium aquilinum	endemic	49	291.5	5.9
5	Poaceae	Deschampsia nubigena	endemic	46	211	4.6
6	Ericaceae	Vaccinium reticulatum	endemic	39	108	2.8
7	Asteraceae	Conyza bonariensis	naturalized	34	27	0.8
8	Asteraceae	Ageratina riparia	naturalized	24	27	1.1
9	Poaceae	Agrostis sandwicensis	endemic	24	27	1.1
10	Aspleniaceae	Asplenium trichomares	endemic	19	9.5	0.5
11	Caryophyllaceae	Arenaria serpyllifolia	naturalized	18	9	0.5
12	Poaceae	Holcus lanatus	naturalized	15	115.5	7.7
13	Cyperaceae	Carex wahuensis	en			
14	Asteraceae	Ageratina adenophera	nat		Plot sur	face cov
15	Juncaceae	Luzula hawaiiensis	en 15	- F	domic 🔳	Voturolizo

- 38% coverage for native, 4% coverage for non-native species
- Elevation determines coverage of grasses



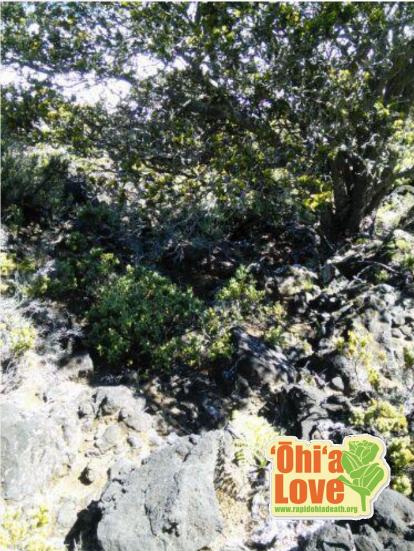
Survey results: Elevation effects

- Weak negative relationship between species diversity and elevation
- In sub-alpine habitat, plots with high species counts are Poaceae-dominant vs. Styphella-dominant
- Poa = 18 sp/plot
 Sty = 11 sp/plot

Survey results: Elevation effects

What is the status of habitat regeneration in Nakula/Kahikinui?

- Non-native grasses outcompete native seedlings, slowing re-colonization in Poaceae dominated plots
- Native species preferred by goats (*Dubautia*, *Sophora*) occurring in plots, especially at high elevation
- Resilient native species maintain habitat structure


Continuing work

- Characterize habitat near active burrow sites
 - Fenced area in HALE showed 8% increase in recruitment 3 years after ungulate exclusion
 - Our site went from 8 32 burrows between 2016/2017

For discussion:

- Will changing climate influence vegetation communities on the leeward slope? Wouldn't it be great to have a long-term data logging weather sensor up there?
- Argyroxiphium sandwicense were not found in our plots but are being out-planted in the site. How can our work support those efforts?
- What harmful invasive species should our team be watching for?

Mahalo to Lynx Gallagher, Becca Pederson, and Amy Frate for veg survey work and burrow searching!

